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Abstract. In 2005 J. L. Waldspurger proved the following theorem: Given a finite real
reflection group G, the closed positive root cone is tiled by the images of the open
weight cone under the action of the linear transformations 1 − g. Shortly after this
E. Meinrenken extended the result to affine Weyl groups and then P. V. Bibikov and
V. S. Zhgoon gave a uniform proof for a discrete reflection group acting on a simply-
connected space of constant curvature.

In this paper we show that the Waldspurger and Meinrenken theorems of type A
give an interesting new perspective on the combinatorics of the symmetric group.
In particular, for each permutation matrix g ∈ Sn we define a non-negative integer
matrix WT(g), called the Waldspurger transform of g. The definition of the matrix
WT(g) is purely combinatorial but it turns out that its columns are the images of the
fundamental weights under 1− g, expressed in simple root coordinates. The possible
columns of WT(g) (which we call UM vectors) biject to many interesting structures
including: unimodal Motzkin paths, abelian ideals in the Lie algebra sln(C), Young
diagrams with maximum hook length n, and integer points inside a certain polytope.

We show that the sum of the entries of WT(g) is half the entropy of the corresponding
permutation g, which is known to equal the rank of g in the MacNeille completion of
the Bruhat order. Inspired by this, we extend the Waldspurger transform WT(M) to
alternating sign matrices M and give an intrinsic characterization of the image. This
provides a geometric realization of MacNeille completion of the Bruhat order (a.k.a. the
lattice of alternating sign matrices).

Keywords: Alternating Sign Matrices, Waldspurger Transform, Affine Symmetric Group,
Abelian Ideals, SIF Permutations, Bruhat Order, MacNeille Completion

1 Waldspurger and Meinrenken Theorems

Our work is motivated by making the following theorems explicit for type A, where the
finite Weyl group is the symmetric group, Sn and the affine Weyl group is S̃n.

∗Partially supported by a grant from the Simons Foundation.
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Figure 1: The Waldspurger Decomposition for A2 = S3

Theorem 1 (J. L. Waldspurger, 2005 [7]). Let W be a Weyl group presented as a reflection
group on a Euclidean vector space V. Let Cw ⊂ V be the open cone over the fundamental weights
and CR ⊂ V the closed cone spanned by the positive roots. Let the cone associated with group
element g be Cg := (I − g)Cw (where I is the identity element in G). One has the decomposition

CR =
⊔

g∈W
Cg.

Theorem 2 (E. Meinrenken, 2006 [5, 2]). Let the affine Weyl group for a crystallographic
Coxeter system be denoted Wa and recall that Wa = Λ o W where the co-root lattice Λ ⊂ V
acts by translations. Let A ⊂ C denote the Weyl alcove, with 0 ∈ A. Then the images Vg =
(id− g)A, g ∈Wa are all disjoint, and their union is all of V. That is,

V =
⊔

g∈Wa

Vg.

We will define the Meinrenken tile to be
⊔

g∈W
Vg, restricting to a copy of the finite

Weyl group inside of the affine Weyl group. The semi-direct product with the co-root
lattice simply translates the Meinrenken tile and so this restriction is convenient from a
combinatorial perspective. Although it is built out of simplices, the Meinrenken tile is
not a simplicial complex, or even a CW complex, and it need not even be convex.

In type A, both Cg and Vg are easily computed in terms of what we call the Wald-
spurger Matrix of the permutation g, WT(g). We will define these matrices in the next
section and show how to compute them for a given permutation.
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Figure 2: The Meinrenken tiling for A2 = S3.

2 The Waldspurger Transform for Permutations

Definition 1. Let φ denote the reflection representation of the symmetric group

φ : Sn −→ GLn−1(R).

The Waldspurger matrix, WT(g), of a permutation g is the matrix of φ(1)− φ(g) applied to the
matrix with columns the fundamental weights, all expressed in root coordinates.

Our first theorem gives a concrete combinatorial way of finding the Waldspurger
matrix associated with a given permutation. It is helpful to review the definition of the
Cartan Matrix of a root system and note what it looks like for type A. The Cartan matrix
of a root system is the matrix whose elements are the scalar products

aij = 2
(ri, rj)

(ri, ri)

(sometimes called the Cartan integers) where the ri’s are the simple roots. Recall that
the root system An−1 has simple roots the vectors ai : ei − ei+1 for i = 1, . . . , n− 1. One
can verify that the Cartan matrix for this root system has two’s on the main diagonal,
negative one’s on the superdiagonal and subdiagonal, and zeros elsewhere. Its columns
express the simple roots in the basis of fundamental weights.

Theorem 3. Let P be the (n− 1)× (n− 1) matrix for the permutation π ∈ Sn expressed in
root coordinates. Let C be the (n− 1)× (n− 1) Cartan matrix and let D be the (n− 1)× (n− 1)
matrix
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Di,j =





∑
a≤i
b>j

πa,b i ≤ j

∑
a>i
b≤j

πa,b i ≥ j.

Then we have that (I− P) = DC.

Because the inverse of the Cartan matrix expresses the fundamental weights in simple
root coordinates, we may multiply both sides of the equation above on the right by C−1

and observe
D = WT(π).

Computing the Waldspurger Transform Combinatorially:
Let π ∈ Sn be expressed as an n× n permutation matrix. For aesthetics our examples

put the entries of π on a grid, leave off the zeros, and use stars instead of ones. Construct
the n− 1× n− 1 Waldspurger matrix WT(π) in the spaces between the entries of the
permutation matrix as follows: If an entry is on or above the main diagonal, count the
number of stars above and to the right, and put it in the space. If the entry is on or
below the main diagonal, count the number of stars below and to the left and put it in
the space. Note that entries on the diagonal are still well defined. As an example, here
is the Waldspurger matrix for the permutation 456213 ∈ S6.

1 1 1 1 0

1 2 2 1 0

1 2 3 2 1

0 1 2 2 1

0 0 1 1 1

Now suppose M is a Waldspurger matrix for the permutation π, with columns
c1, c2, . . . , cn−1. To return to the language of the Waldspurger and Meinrenken theorems
we have:

CM := Cπ =

{
n−1

∑
i=1

aici| ai ∈ R≥0

}
(2.1)

VM := Vπ =

{
n−1

∑
i=1

aici| ai ∈ R≥0 and ∑ ai ≤ 1

}
. (2.2)
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It is at times convenient to study the boundary of the Meinrenken tile, so we will also
define

∆M := ∆π :=

{
n−1

∑
i=1

aici| ai ∈ R≥0 and ∑ ai = 1

}
. (2.3)

3 Geometric Observations... what is this thing?

Our first example, in Figures 1 and 2, was in many ways too nice. One may be tempted to
study the Meinrenken tile or a slice of the root cone as a simplicial complex, or at the very
least a regular CW complex. Going up even one dimension presents several unforeseen
complications. For starters, our Meinrenken tile is no longer convex! Below a slice of
the root cone in the Waldspurger decomposition for W = S4, labeled with important
points in root coordinates, appears on the left, and the corresponding Meinrenken tile
constructed out of zometools on the right. (The two yellow edges and one blue edge
coming out from the origin are the fundamental weights.)

100 001

010

121

111

110 011

One can now see where the slice of the root cone and the Meinrenken tile fail to be
simplicial or regular CW complex. In the Waldspurger picture, the top triangle intersects
the two below it along “half edges". One may desire to consider it instead as a degenerate
square to fix this impediment, but from the Meinrenken tile, it seems this new vertex
should rightly be the fundamental weight with root coordinates (1

2 , 1, 1
2) and not the

vertex (1, 2, 1). If we wish to proceed in this manner, we must then include (1
2 , 1, 1

2) as a
vertex for the two triangles 110,121,111 and 111,121,011 and consider them as degenerate
tetrahedra. This sort of topological completion via intersecting facets has proven to be
a rabbit hole with less fruit than one might hope for. Perhaps some insight can be lent
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Figure 3: A slice of the Root cone A3 = S4

from the theory of simplicial sets. Instead let us turn our attention back to the symmetric
group, and consider Figure 3.

Observe that the dimension of a simplex in the cone slice relates to the number of
cycles (counting fixed points as one cycles) of the corresponding permutation. The four
cycles are the triangles, the three cycles and disjoint two cycles are the edges, and the
transpositions are vertices. This has been known for some time and can be seen as a
corollary to the Chevalley-Shephard-Todd theorem. The astute observer will notice that
there are two permutations missing in the picture. The identity corresponds to the cone
point which we cut off, and the vertical edge in the center we left unlabeled, as we feel
that (along with the starred edge 3412) it deserves some discussion. It corresponds to the
permutation 4321 and its 3× 3 Waldspurger matrix has all entries equal to one except
for a two in the middle. If we consider the columns of each Waldspurger matrix as being
ordered from left to right, the cones in the Waldspurger decomposition are endowed
with an orientation. The orientation appears to be consistent, but what does it say in the
case of this permutation? It appears to go first up from (1, 1, 1) to (1, 2, 1) and then back
down. The starred edge, 3412 is also strange. Its Waldspurger matrix has first column
(1, 1, 0) second column (1, 2, 1) and third column (0, 1, 1) so it is perhaps better seen as a
degenerate triangle than as an edge. Looking at the Meinrenken tile, we see that ∆3,4,1,2
is actually a triangle. The strangeness in the Meinrenken picture comes from the fact
that V3,4,1,2 is a square and not a tetrahedron.

Despite all of these collapses in dimension, there is still a fair amount of symmetry
in the Meinrenken tile.

Theorem 4. Let θ denote the longest positive root, i.e. the vector of all ones in root coordinates.
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Then reflection through the affine hyperplane orthogonal to θ with height one is an involution on
the set of ∆π’s.

At the level of permutations, this involution is just applying the transposition (1, n)
on the left. In contrast, applying the transposition (1, n) on the right is the gluing map
for using multiple Meinrenken tiles to tile space. The left right symmetry is conjugation
by the longest element in the Coxeter group.

4 Motzkin Paths, Abelian Ideals, Tableaux, and More

Definition 2. A UM vector is any vector that appears as a column in WT(π) for some permu-
tation π.

Theorem 5. A UM vector must start with a zero or a one, weakly increase by one until its entry
on the diagonal, and then weakly decreases by one until its final entry, a zero or one. Any row
vector of a Waldspurger matrix must also be a UM vector with its maximum also on the diagonal.
There are 2n UM vectors of length n.

Definition 3. A Motzkin path is a lattice path in the integer plane Z×Z consisting of steps
(1, 1), (1,−1), (1, 0) which starts and ends on the x-axis, but never passes below it. A Motzkin
path is unimodal if all occurrences of the step (1, 1) are before the occurrences of (1,−1). For
brevity, we refer to unimodal Motzkin paths as UMP’s.

Theorem 6. There is a bijective correspondence between UM vectors of length n− 1 and UMPs
with n steps.

Theorem 7. UM vectors are in bijection with tableaux with hook length bounded above by n and
with Abelian ideals in the nilradical of the Lie Algebra sln.

One can take any UM vector and write it as a sum of positive roots by recursively
subtracting the highest root whose nonzero entries correspond to positive nondecreasing
entries in the UM vector. For example, the vector (0, 1, 2, 1) = (0, 1, 1, 0) + (0, 0, 1, 1) This
set of positive roots will always generate an abelian ideal in the nilradical of the Lie
Algebra sln and will correspond to a tableau with bounded hook length, as seen in the
diagram below.

(1, 1, 0, 0) (0, 1, 1, 0) (0, 0, 1, 1)

(1, 1, 1, 0) (0, 1, 1, 1)

(1, 1, 1, 1)

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

←→
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Theorem 8. UM vectors are exactly the coroots c (in root coordinates) such that−1 < (c, r) < 2
for every positive root r. These are the coroots inside the polytope defined by affine hyperplanes at
heights negative one and two orthogonal to every positive root.

This follows from a result which Panyushev attributes to Peterson and Kostant [6]
which is expressed in the language of Abelian ideals.

5 Entropy, Alternating Sign Matrices, and the Waldspurger
Transform in General

Definition 4. The Entropy (alternatively called variance in the literature) of a permutation π, is

E(π) :=
n

∑
i=1

(π(i)− i)2.

Definition 5. The Waldspurger Height of a permutation π, is

h(π) :=
n

∑
i=1

n

∑
j=1

WT(π)i,j.

Theorem 9. For π ∈ Sn,

h(π) =
1
2

E(π).

Proof. Consider what each “star" in the transformation diagram contributes to the Wald-
spurger matrix. We can see it as contributing ones to every entry enclosed in the right
triangle between itself and the main diagonal, and contributing one half for every entry
on the main diagonal whose box is cut by the triangle.

1 1 1 0 0

1 2 2 1 0

1 2 3 2 1

0 1 2 2 1

0 0 1 1 1
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Definition 6. Alternating Sign Matrices or ASMs, are square matrices with entries 0, 1, or
−1 whose rows and columns sum to 1 and alternate in sign.

Theorem 10 (A. Lascoux and M. Schützenberger, 1996). One half the entropy of a permuta-
tion is its rank in the Dedekind-MacNeille completion of the Bruhat order. The elements in this
lattice can be viewed as alternating sign matrices with partial order component-wise comparison
of entries in their associated monotone triangles.

The Dedekind-MacNeille completion of a poset P is defined to be the smallest lattice
containing P as a subposet [3]. Its construction is similar to the Dedekind cuts used to
construct the real numbers from the rationals. For more on alternating sign matrices,
monotone triangles, and their history we refer to [4]. This connection to alternating
sign matrices motivates us to define the Waldspurger Transform of a matrix, not just a
permutation.

Definition 7. An n× n matrix M is sum-symmetric if its ith row sum equals its ith column
sum for all 1 ≤ i ≤ n. We write M ∈ SSn.

Definition 8. From an n × n sum-symmetric matrix M, define the n − 1 × n − 1 matrix,
WT(M) where

WT(M)i,j =





∑
a≤i
b>j

Ma,b i ≤ j

∑
a>i
b≤j

Ma,b i ≥ j
.

Proposition 1. WT(M) is well-defined if and only if M ∈ SSn. If M were not sum-symmetric,
the diagonal would be “over-determined.”

Proposition 2. The WT map is linear and surjective with kernel the diagonal matrices.

WT : SSn �Matn−1

Theorem 11. The restriction of the Waldspurger transform to the alternating sign matrices has
as its image all M ∈ Matn−1 such that columns and rows of M are UM vectors with maximums
on the diagonal. Component-wise comparison of these matrices is exactly the same order as is
defined on the ASM lattice via monotone triangles.

We may now extend many of the previous definitions to consider not just permu-
tations, but alternating sign matrices. In particular, we consider VM and ∆M, simplices
corresponding to ASMs, and hM, the Waldspurger height of an ASM.

Theorem 12. The height statistic not only gives the rank of an ASM M in the lattice, it also is
a literal height of the baricenter of ∆M inside of the Meinrenken tile in the direction of the sum
of the positive roots. This gives a geometric realization of the ASM lattice inside the Meinrenken
tile, with the caveat that baricenters of ∆M1 and ∆M2 may coincide if both M1 and M2 are not
permutations.
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Figure 4: The Dedekind MacNeille completion of the Bruhat order for A2 = S3 and
the corresponding Waldspurger matrices.
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Figure 5: Place WT(M) at the baricenter of ∆M for each M ∈ ASM to get a geometric
realization of the Hasse diagram inside the Meinrenken tile. (Four of the baricenters
in the A3 picture have multiplicity two.)
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5.1 SIF Permutations and Dimensionality

A recent connection has been made between the connected positroids of Postnikov in-
troduced to study the totally nonnegative Grassmannian and SIF permutations [1]. Here
we show that SIF permutations are exactly the ones with distinct non zero columns in
their Waldspurger matrices. It may be a worthwhile endeavor to study relationships
among connected positroids via the geometry of the Meinrenken tile. To that end, we
state the following relevant theorems:

Definition 9. A permutation on [n] = {1, 2, . . . , n} is stabilized-interval-free (SIF) if it does
not stabilize any proper subinterval of [n]. For example (3, 6, 5, 4)(1, 7, 2) in cycle notation, fails
to be SIF because it stabilizes the interval [3, 6] = {3, 4, 5, 6}.

Theorem 13. WT(π) has distinct, nonzero columns if and only if π is SIF.

Theorem 14. The number of permutations π of n such that dim(∆π) = k is

[xn−1−k]2
n−1

∏
i=2

(x + i).

That is, the generating function for permutations listed by their affine co-dimension is 2(x +
2)(x + 3) . . . (x + n− 1).

6 Types B and C

Since the Waldspurger and Meinrenken decompositions are defined for other types, it is
natural to ask which phenomena we have observed will hold more generally. It seems
that the connection to Abelian ideals only holds in type A. The height statistic equaling
the rank in the Dedekind-MacNeille completion seems more promising.

Definition 10. For general crystallographic root systems, Φ, define the Waldspurger Transform
of a Weyl group element g to be the matrix

WTΦ(g) := (Id− Rg)C−1
Φ

where Rg is the matrix of g in the coordinates of the simple roots of Φ, and CΦ is the Cartan
Matrix.

If no root system is specified, we will assume type A, so that WT = WTA is the Waldspurger
Transform already discussed.

Desiring to mimic type A and keep things as combinatorial as possible, consider the
representation of the Weyl group Bn = Cn, as centrally symmetric permutations in S2n
and consider the “folding map”:
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F : WTA2n−1(CS2n) −→ Matn

where

F (M)i,j =

{
Mi,j + M2n−i+1,j for all 1 ≤ i, j < n
Mi,j for all i = n, j ≤ n.

Theorem 15. F is a bijection between centrally symmetric Waldspurger Matrices of type A2n−1,
and Waldspurger Matrices of type Cn and the following diagram commutes:

Bn WTCn
(Bn)

CS2n WT(CS2n) ⊂ UMn−1

WTCn

WT

⋆ F

Theorem 16. WTCn(π
ᵀ) = (WTBn(π))ᵀ.
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